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THE INTERACTION OF BACKGROUND OCEAN AIR
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SUMMARY

A two-fluid model suitable for the calculation of the two-phase flow field around a naval surface ship is
presented. This model couples the Reynolds-averaged Navier–Stokes (RANS) equations with equations
for the evolution of the gas-phase momentum, volume fraction and bubble number density, thereby
allowing the multidimensional calculation of the two-phase flow for monodisperse variable size bubbles.
The bubble field modifies the liquid solution through changes in the liquid mass and momentum
conservation equations. The model is applied to the case of the scavenging of wind-induced sea-back-
ground bubbles by an unpropelled US Navy frigate under non-zero Froude number boundary conditions
at the free surface. This is an important test case, because it can be simulated experimentally with a
model-scale ship in a towing tank. A significant modification of the background bubble field is predicted
in the wake of the ship, where bubble depletion occurs along with a reduction in the bubble size due to
dissolution. This effect is due to lateral phase distribution phenomena and the generation of an upwelling
plume in the near wake that brings smaller bubbles up to the surface. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: two-phase flow; bubbly wake; ship hydrodynamics; multidimensional two-fluid model; spatial distribu-
tion of bubble size

1. INTRODUCTION

With the recent improvement of high-speed digital computers and the development of
multidimensional models that allow calculation of two-phase flow [1], prediction of the
distribution of bubbles in the wave field and in the wake of a surface ship has become feasible.
The presence of bubbles can modify the total resistance, wave fields and propeller efficiency.
Furthermore, the two-phase flow in the region close to the ship’s hull will influence how the
bubbly wake will look in the far field, where the presence of bubbles can be determined by
measuring acoustic attenuation [2]. It is the interest in the two-phase flow in the region close
to the ship, and its effect on the bubbly wake for signature estimations, that has motivated this
work.

In the case of a ship, bubbles can be entrained by several mechanisms. Breaking bow and
stern waves, spilling waves, boundary layer air entrainment and propeller cavitation and/or
ventilation can cause air to be entrained into the ocean. All these mechanisms are caused by
hull–surface interaction or by the propeller. In addition, bubbles are naturally present in the
sea due to wind-induced breaking and spilling, wave–wave interactions, etc. These mechanisms
are dependent on the sea and weather conditions, and the degree of air entrainment remains
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unknown at the present and is subject of further research. A surface ship can create a bubbly
wake by two means: by causing bubble entrainment or by scavenging the existing background
bubbles in the sea. In both cases the ship may cause a significant modification of the ambient
bubble field.

The interaction of bubbles with a surface ship involves several processes. Buoyancy
contributes to the accumulation of bubbles below the hull of the ship and to loss of bubbles
through the surface. In most of the cases, lift forces may also attract bubbles towards the hull.
Other forces such as the virtual mass force and the lateral pressure gradients exhibit more
complex behavior. In addition, the bubbles can dissolve (or grow), depending on the local
pressure, the size of the bubble and dissolved air concentration in the water. To complete the
picture, the liquid velocity and pressure fields are modified by the presence of bubbles through
introduction of interfacial forces, changes in the continuity equation and in the resultant
turbulent field.

To study these effects, simulations were performed using the geometry of a typical naval
combatant, the US Navy frigate FF-1052, shown in Figure 1. This ship offers a complex
geometry with bulbous bow and transom stern, and has been studied numerically for the single
phase case with and without a propeller, with non-zero Froude number boundary conditions
at the free-surface and for the unpropelled ship in bubbly two-phase flow for the case of zero
Froude number [3]. Some experimental data exist for the case of single-phase flow, for the
model-scale FF-1052 [4–6], but unfortunately, no experimental results are available for any
case of two-phase flow around the ship. The only available data related to the two-phase flow
around a ship is the acoustic response in the far wake, several ship lengths behind the stern [2].
This lack of experimental results is not surprising, considering that model-scale ships do not
entrain bubbles and data acquisition at full-scale is very complex and expensive. In this regard,
the study of the two-phase flow field caused by a ship moving through the ocean having a
background of bubbles is appealing because it is possible to perform controlled experiments
with model-scale in towing tanks injecting a sheet of bubbles in front of the ship.

Figure 1. US Navy FF-1052 and free surface. The contour lines represent constant gas volume fraction.
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Figure 2. Control volume in the computational domain.

In this paper, a multidimensional model appropriate for calculating the two-phase flow
around a naval surface ship is presented under free-surface boundary conditions, including
several effects such as bubble dissolution and pressure effects, that cause the bubble radius to
change as the bubbles are transported by the liquid. The model is applied to the case of the
scavenging of background bubbles using free-sea data for the gas volume fraction and bubble
number density boundary conditions.

At this stage of the study the main interest is in showing the feasibility of the calculations
and the main trends observed in the two-phase flow, therefore some simplifications have been
made in the numerical resolution of the liquid equations to make the calculations more
economical. These include the use of a zero-order turbulence model and somewhat coarse
grids. These simplifications are also justified by the present impossibility of validation of the
numerical results due to the lack of experimental data in the subject.

2. MATHEMATICAL MODEL

The starting point for the modeling of the two-phase flow phenomena is a mechanistically
based multidimensional two-fluid model. [1,7–10]. The following conditions are assumed:

1. The bubbles have negligible inertia (rg�rl). This assumption holds for air–water flows at
the pressures expected in the flow near a high speed surface ship.

2. The bubbles are spherical. This hypothesis is reasonable since very small bubbles are
present in the flows under consideration.

3. The liquid is incompressible.

The ensemble-averaged continuity and momentum equations for the gas and liquid phases
in the two-fluid model can be written in Cartesian tensor notation as

(akrk

(t
+
(

(xj

(akrkuk, j)=Sk, (1)

(akrkuk,i

(t
+
(

(xj

(akrkuk,i uk, j)=
(

(xj

[ak(tk,ij+tk,ij
Re )]+Mk,i+akrkgdi3, (2)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 571–600 (1998)



P.M. CARRICA ET AL.574

where k=g or l denotes the gas or liquid phase, ak is the phasic volume fraction, rk is the
phasic density, uk,i is the velocity of phase-k, tk,ij and tk,ij

Re are the viscous stress tensor and the
turbulent stress tensor of phase-k, Mk,i is the interfacial momentum transfer between the
phases, and the last term on the right-hand-side of Equation (2) is the gravitational force.

A mass source Sk is included in Equation (1). In this work, this source is exclusively due to
the gas dissolution into the liquid, and can be positive or negative. Since this process is very
slow, its effect in the momentum transfer between the phases is negligible. In addition, due to
the relatively small gas volume fractions present in the flow and assumption 1, this mass source
is negligible for the liquid phase.

Figure 3. Multi-block grid. (a) Crossplane of block 1 at x/L=0.05. Only the first 25 nodes in the h-direction are
shown for clarity. (b) Longitudinal free-surface plane. The blocks are intentionally separated for clarity.
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Table I. Integral quantities used to test grid convergence

Value x y z

0.344, 0.395, 0.023, 0.022,Pmax Hull −0.044, −0.038,
0.398, 0.408 −0.042, −0.0420.0216, 0.0216
−0.19, −0.23, −0.055, −0.0573,0.056, 0.0445,Pmin Hull
−0.23, −0.23 0.0445, 0.0445 −0.0573, −0.0573

amax (%) 3.03, 3.8, 4.02, 0.081, 0.99, Free surfaceHull
1.0, 1.04.1

3.11, 11.6, 11.6, Free surface0.081, 0.99,Nmax (%) Hull
11.8 1.0, 1.0
2.14, 2.3, 2.29, 0.056, 0.056,Zmax (×10−2) Hull Free surface

0.056, 0.0562.29
Zmin (×10−3) −5.45, −2.02, 0.85, 0.50, Hull Free surface

0.52, 0.555−2.04, −2.01
1.05, 1.074, 108, 105, 104,�u� g�max 0.397, 0.445, −0.061, −0.063,

0.445, 0.4451.079, 1.077 −0.064, −0.065103 (×10−5)

The values in each cell are given for the very coarse, coarse, medium and fine grids.

For the sake of simplicity, a denotes the gas volume fraction, thus a=ag and al=1−a.
Using assumption 3, the mass conservation equations (1), can be written in indicial form as

((1−a)
(t

+
( [(1−a)ul,j ]

(xj

=0, (3)

((rga)
(t

+
((rgaug,j)
(xj

=Sg. (4)

In contrast to the liquid density, the gas density rg cannot be considered constant, due to the
large pressures present at the bottom of the ship and near the bow. A simple model consisting
of the ideal gas relation, coupled with hydrostatic pressure, is used to calculate the gas density
at every point in the flow field

rg= (rlgz+p)
rg,o

po

, (5)

Figure 4. Wave profiles at the hull.
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where z is the vertical distance to the free surface, and po and rg,o are the pressure and the
density of the gas just over the surface (i.e. at atmospheric pressure).

The mass dissolution rate of a bubble is calculated from the expression given by Levich [11]
and used by Hyman [2] to calculate the far-field bubbly wake of a ship

Figure 5. Liquid axial velocity for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 5 (Continued)

dm
dt

=8(C�−C0)k2/3�ur�1/3rb
4/3, (6)

where rb is the bubble radius, ur is the relative velocity between the bubble and the liquid, k

is the diffusivity of air in water, and C� and C0 are the concentrations of dissolved gas at a
distant point and at the bubble surface. These concentrations are computed using Henry’s law,
assuming that the partial pressure of dissolved air in the water column is constant at one
atmosphere, similar to the assumption made by Hyman [2]. The total source Sk can then be
calculated as

Sk=
dm
dt

N, (7)

where N is the local bubble number density, which can be calculated with an additional
hyperbolic equation

(N
(t

+
( [ug,j N ]
(xj

=0. (8)

Assuming that the bubbles are spherical, the volume fraction and the bubble number density
can be used to calculate the bubble radius

rb=
� 3a

4pN
�1/3

. (9)

Following assumption 1, all the inertia terms can be neglected in the gas momentum
equations. Additionally, the shear stress and Reynolds stress terms in the gas phase are
neglected and the pressure is assumed to be the same in the continuous and dispersed phases.
Under these conditions, the gas momentum equations are reduced to
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−
(

(xi

(ap)+arggdi3+Mg,i=0, (10)

where the interfacial momentum sources of the liquid and gas phases are related by

Mg,i+Ml,i=0, (11)

Figure 6. Liquid cross-plane velocity for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 6 (Continued)

then it follows that the liquid momentum equations can be reduced to the two-phase modified
RANS equations

(ul,i

(t
+ul,j

(ul,i

(xj

+
1

(1−a)
(

(xj

[(1−a)u %l,i u %l,j ]

= −
1

(1−a)rl

(p
(xi

+
n

(1−a)
(

(xj

�
(1−a)

�(ul,i

(xj

+
(ul,j

(xi

�n
+

(1−a)rl+arg

(1−a)rl

gdi3, (12)

where in the last gravity head term the multiplier is almost one, even for very large gas volume
fractions. The third term on the left-hand-side is the Reynolds stress tensor, which can be
constituted as

−u %i u %j=nt

�(ui

(xj

+
(uj

(xi

�
−

2
3

dij k. (13)

In Equation (13) the eddy diffusivity, nt, and the turbulent kinetic energy, k, have been
introduced. To calculate the turbulent viscosity, the Baldwin–Lomax algebraic turbulence
model [12] was used, modified to account for the effect of the gas in the turbulence quantities.
Even though state-of-the-art turbulence modeling for ship hydrodynamics has evolved to
include two-equation [13] and full Reynolds-stress [14] models, the Baldwin–Lomax model was
chosen here for simplicity. More complex models would have made a better prediction of the
single-phase hydrodynamics, the turbulent bubble dispersion and bubble wake diffusion, but
the coarse qualitative results of the two-phase flow are expected to be essentially the same.
However, it must be noticed that because of its simplicity, the Baldwin–Lomax model is

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 571–600 (1998)
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limited in its utility as a predictive tool in ship hydrodynamics and therefore, more complex
models must be tested for the case of two-phase flows. In the Baldwin–Lomax model the
viscosity is calculated near the wall using the following relationship

nt,w=lm
2 �v̄ �, (14)

and in the outer layer with the expression

Figure 7. Pressure contour levels at different cross-planes for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 7 (Continued)

nt,o=CkCcpFwkFKleb, (15)

where lm is the mixing length, v̄ is the vorticity, Fwk is the wake function, FKleb, is the
Klebanoff intermittence function, and Ck and Ccp are empirical constants of the model.

The liquid turbulent kinetic energy is not computed directly from this turbulence model, but
can be calculated assuming the following relationship between the mixing length and the eddy
viscosity of the k–o model

kl=
� Clnt

Cmlm

�2

, (16)

where Cl=0.4 and Cm=0.09 are constants in the k–o model. The characteristic length, lm is
calculated in the near-hull region as

lm=ky
�

1−exp
�

−
y+

A+

�n
, (17)

and is assumed to be

lm=Fwk=min
�

ymaxFmax, Cwkymax

Udiff
2

Fmax

�
(18)

in the outer layer.
Bubble-induced turbulence was modeled with a simple local assumption consistent with the

algebraic turbulence model. Following Sato et al. [15], bubble-induced turbulence results in an
additional turbulent viscosity as

nb=1.2rba �u� r�, (19)

where 1.2rb is the characteristic length and the relative velocity is the characteristic velocity.
Additionally, the total viscosity is calculated using linear superposition [15]

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 571–600 (1998)
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neff=n+nt+nb. (20)

The influence of bubble-induced turbulence is expected to be important in the near-hull region
where relatively large gas volume fractions can be present and the liquid turbulent viscosity is
small.

Figure 8. Gas–liquid relative cross-plane velocity for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 8 (Continued)

The turbulent kinetic energy was also modified to account for the effect of the bubbles. The
same linear superposition principle was applied for the bubble-induced kinetic energy, yielding
[16]

k=k1f+kb, (21)

where kb is the turbulent kinetic energy induced by the bubbles and k1f is the single-phase
turbulent kinetic energy, calculated from Equation (16). This model is considered strictly valid
for gas volume fractions of up to :3%. For higher values the interaction between the bubbles
would increase the bubble-induced turbulent kinetic energy [16]. The bubble-induced turbu-
lence results in an additional pseudo-turbulent kinetic energy of the form [8]

kb=Cpa(1−a)�u� r�2. (22)

Expanding the interfacial momentum sources, the gas phase momentum conservation
equation (10) is written as

−
((ap)
(xi

+arggdi3−p
((1−a)
(xi

+Mg,i
VM+Mg,i

L +Mg,i
D +Mg,i

TD=0. (23)

In Equation (23) the interfacial momentum transfer terms have been modeled separately.
The virtual mass accounts for the effect of acceleration of the liquid displaced by the bubbles,
and can be modeled as [7]

Mi
vm=arlCvm

��(ul,i

(t
+ul,j

(ul,i

(xj

�
−
�(ug,i

(t
+ug,j

(ug,i

(xj

�n
, (24)
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where the virtual mass coefficient Cvm, is 0.5 for dilute potential flow [1]. The lift force term
is calculated from potential flow theory, and can be expressed as

Mi
L= −arlCLoijkoklm(ul,j−ug,j)

(ul,l

(xm

. (25)

In Equation (25) oijk is the third-order permutation tensor and CL is the lift coefficient, which
has been found to be :0.1 for most practical two-phase flows [17–19].

The drag force is expected to be one of the most important forces in the process due to the
small size of the bubbles present in the flow. The drag force may be expressed as

Mi
D=arl

3
8

CD

rb

(ul,i−ug,i)�u� r�, (26)

where CD is the drag coefficient, which is assumed to be [20]

CD=
12

Reb(1−a)
(1+0.168Reb

0.75), (27)

where Reb is the bubble Reynolds number based on the bubble radius and the magnitude of
the gas–liquid relative velocity, ur. It should be noted that Equation (27) reduces to the Stokes
drag coefficient when the bubble Reynolds number is small and the gas volume fraction is
negligible.

The last term is the turbulent dispersion which is of major importance in this work, not only
because is the cause of bubble dispersion in the wake of the ship, but also because it is the only
force that prevents unrealistic gas concentrations at the hull.

Nevertheless, the turbulent dispersion term should show a dispersion behavior for very small
bubbles similar to that of passive scalars. This means that the dependence on the radius must
be the same as that in the drag term. This fact suggests that the turbulent dispersion coefficient
must be a function of the bubble radius and that for very small bubbles the diffusion of
bubbles due to the turbulent dispersion must satisfy

Scb=
nt

nb

$1, (28)

where Scb is the bubble Schmidt number and nb is the bubble diffusion. Some evidence [21]
shows that for the case of small solid particles the Schmidt number should be between 0.7 and
1. In this limiting case all the forces but the drag and the turbulent dispersion are zero in
Equation (23), and the turbulent dispersion force can be calculated as

Mi
TD= −

3
8

rl

CD �ur�
rb

nt

Scb

(a

(xi

. (29)

In the case of the flow around a ship, most of the bubbles fall in the range of radius between
10 and 150 mm, with only a few bubbles up to 500 mm [22]. For this reason, the Schmidt
number is taken to be one and Equation (29) is considered to be valid over the entire range.
Even though much effort has been dedicated to the subject of turbulent dispersion, most of it
has been devoted to Lagrangian dispersion models. More research is needed in this area in
Eulerian dispersion models.

If assumptions 1 and 3 are used, the non-dimensional piezometric pressure p̂=p/rlUo
2 + ẑ/

Fr2 is introduced, and the system of equations is non-dimensionalized using the ship velocity
U0 and the ship length L, the continuity momentum and number density equations for the
liquid and gas phases take on the following dimensionless form.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 571–600 (1998)



BACKGROUND OCEAN AIR BUBBLES 585

Liquid continuity equation

((1−a)
(t. +

( [(1−a)ûl,j ]
(x̂j

=0. (30)

Liquid momentum equation

(ûl,i

(t. +
�

ûl,j−
1

(1−a)
(

(x̂j

�1−a

Ret

�n (ûl,j

(x̂j

−
1

(1−a)
(

(x̂j

�1−a

Ret

� (ûl,j

(x̂i

= −
(

(x̂i

�
p̂+

2
3

k. �+
1

Ret

(

(x̂j

�(ûl,i

(x̂j

+
(ûl,j

(x̂i

�
+

1
1−a

�
−
(

(x̂i

�
p̂+

2
3

k. �+
adi3

Fr2

n
. (31)

Gas continuity equation

((r̂ga)
(t. +

((r̂gaûg,j)
(x̂j

=
dm̂
dt. N. . (32)

Gas momentum equation

Cvm
��(ûg,i

(t. + ûg,j

(ûg,i

(x̂j

�
−
�(ûl,i

(t. + ûl,j

(ûl,i

(x̂j

�n
= −CLoijkoklm(ûl,i− ûg,i)

(ûl.l

(x̂m

+C. D(ûl,i− ûg,i)�ur�−
((p̂+2/3k. )
(x̂i

+
di,3

Fr2−C. D �ur�
n̂t

Scb

1
a

(a

(x̂i

.

(33)

Bubble number density equation

(N.
(t. +

( [ûl,jN. ]
(x̂j

=0. (34)

In Equations (30)–(34), the time, velocity, length, gas density, pressure, eddy diffusivity and
turbulent kinetic energy were non-dimensionalized as follows

t. = tU0

L
, û=

u
U0

, x̂=
x
L

, r̂g=
rg

rg,o

, p̂=
p

rlU0
2, n̂t=

nt

U0
2, k. = k

rlU0
2,

(35)

and in Equations (31) and (33) the turbulent Reynolds number, Ret, the Froude number, Fr,
and the modified drag coefficient, C. D, are given by

Ret=
UoL

(n+nt+nb)
, Fr=

U


gL
, C. D=

3
8

CD

L
rb

. (36)

The turbulent Reynolds number is the effective Reynolds number seen by the numerical
scheme and is a function of the position. Note that the bubble Reynolds number appearing in
the gas momentum equation can be calculated independently from the ship Reynolds number,
so it is possible to define a liquid problem Reynolds number and a gas problem Reynolds
number. From this point on in the paper, all the equations will be expressed in non-dimen-
sional form omitting the dimensionless cap for simplicity.
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3. COORDINATE TRANSFORMATION

Following the same approach that Stern et al. [23] used for single-phase flow calculations, the
equations are transformed from the physical domain, having Cartesian co-ordinates (x, y, z),
into the computational domain with co-ordinates (j, h, z). Only the independent variables are
transformed, leaving the dependent variables in the original co-ordinates. In the computational
domain the computational cells are cubic with sides of unit length. The generalized transforma-
tion is fully characterized with the geometric coefficients bi

j, gij and fi and the Jacobian of the
transformation J, which are defined as [24]

bl
j=olmn

(xm (xn

(jj (jk

, (37)

gij=
1
J2 bm

i bm
j , (38)

fi=
1
J
(

(jj

(Jgij), (39)

J=Ã
Ã

Ã

xj

yj

zj

xh

yh

zh

xz

yz

zz

Ã
Ã

Ã
. (40)

The transformation relations were calculated using the conservative form, and are

9 ·Ub =
1
J
(

(jj

(bi
jUi), (41)

9f �i=
1
J

bi
j (f

(jj

, (42)

92f=gij

(2f

(ji (ji

+ fi

(f

(ji

, (43)

(f

(t
=
(f

(t
−

1
J

bi
j (xi

(t

(f

(jj

, (44)

where f is a generic scalar field. Equations (30)–(34) can be transformed using the relations
(41)–(44), yielding

Gas continuity equation

((rga)
(t

+
1
J
((rgaU. g,j)
(jj

=
1
J

bi
j (xi

(t

((rga)
(jj

+N
dm
dt

. (45)

Bubble number density equation

(N
(t

+
1
J
((NU. g,j)
(jj

=
1
J

bi
j (xi

(t

(N
(jj

. (46)
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Gas momentum equation

Cvm
�(ug,i

(t
−

1
J

bi
j (xi

(t

(ug,i

(jj

+Ŭg,j

(ug,i

(jj

�
=Cvm

�(ul,i

(t
−

1
J
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j (xi

(t

(ul,i

(jj

+Ŭl,j

(ul,i

(jj

�
−CLoijkoklm(ul,i−ug,i)

1
J
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n (ul,l

(jn

+C. D(ul,i−ug,i)�u� r�

+
di,3

Frb
2 −

1
J

bi
j (p
(jj

−
1
a

C. D �ur�
n̂t

Scb

1
J
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j (a

(jj

. (47)

Liquid continuity equation
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(t

+
1
J
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(jj

=
1
J
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j (xi

(t
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. (48)

Liquid momentum equation
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where the contravariant and modified contravariant velocities [25] were introduced and
correspond to the velocities in the direction of the transformed co-ordinates and net fluxes
perpendicular to transformed surfaces

Ŭi=
1
J

bj
iuj=

1
J

(b1
i U+b2

i V+b3
i W), (50)

Ŭi=bj
iuj= (b1

i U+b2
i V+b3

i W). (51)

Equations (45)–(49) constitute the fully coupled two-fluid model in three-dimensional
generalized co-ordinates. For gas volume fraction equal to zero the system reduces to the
single-phase RANS equations.

4. NUMERICAL METHOD

4.1. Liquid phase conser6ation equations

For the liquid momentum and mass conservation equations, the CFDSHIP-IOWA code
developed by Stern et al. [23] and Tahara and Stern [26] was used in a modified form, to
account for the presence of gas bubbles as shown in Equations (48) and (49). CFDSHIP-
IOWA is currently being used to calculate the steady state flow around the US Navy FF-1052.
A brief discussion of the modifications needed to calculate the two-phase flow case is included
here; for further details the reader should see the references cited.

The momentum equations were discretized using a 12-point finite-analytic method. The
numerical method for the single-phase equations remains unchanged except for the presence
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several source terms arising from the interaction with gas and from the fact that now the liquid
velocity field does not satisfy zero divergence (see the liquid continuity equation). Additionally,
the presence of the liquid volume fraction multiplying the stress tensors causes the need of
calculation of spatial derivatives of the volume fraction. These are performed using centered
differences.

A key point in the coupling between the gas and liquid conservation equations is the
treatment of the liquid continuity equation to avoid the unrealistic oscillations that could
appear in incompressible calculations. CFDSHIP-IOWA uses the pressure-implicit split-opera-
tor (PISO) algorithm. This method allows the calculation of the velocity and the pressure in
the same nodes, avoiding the need for staggered grids. The liquid continuity equation is solved
in a control volume as shown in Figure 2 and the liquid volume fraction is included to
calculate the mass fluxes through the walls of the cell.

The solution procedure for the liquid equations using the PISO algorithm is as follows.
First, the momentum equations are solved implicitly using the pressure from the previous time
step. Second, the pressure equation is solved implicitly to obtain an intermediate pressure, and
the corrected velocity field is solved explicitly to satisfy the continuity equation and the
pressure is recalculated. Steady state flows are calculated in this work, therefore, the velocity
and pressure fields do not have to be completely converged at each ‘time step’, allowing a more
economical way to reach steady state by making a few iterations of the pressure and
momentum equations at each time step. The same principle is applied when solving the
equations for the gas phase. Finally, all the equations are solved using a tridiagonal solver and
the method of lines.

It must be noticed that due to the bubble-induced turbulence, the effective cell Reynolds
number, Equation (36), will generally be smaller in a two-phase flow than in a single-phase
flow.

4.2. Gas phase conser6ation equations

Equations (45) and (46) are advection equations, and were solved using a control-volume
upwinding approach [27] including in a TVD flux limiter to reduce the artificial numerical
diffusivity [28,29]. The resulting scheme is second-order-accurate in 1D advection problems
and has the advantage of preventing the development of non-physical spurious oscillations.
For multidimensional problems, Leveque and Goodman [30] have shown that the TVD
schemes are at most first-order-accurate. However, very good results were obtained with this
type of method and in recent years this type of solver has become very popular for solving
hyperbolic problems in two or three dimensions (see e.g. Tamamidis and Assanis [31] and
Saxena and Ravi [32]).

A control volume in the computational domain is shown in Figure 2. Here, P is a node in
the computational grid and the neighboring nodes are north (N), south (S), east (E), west (W),
down (D) and up (U). The properties at the faces of the control volume are represented with
lower case letters. Integrating Equation (45) or (46) using a simple first-order implicit
formulation for the time derivative results in the following scheme

fP−fP
n−1

Dt
=max(V. w, 0)[fW+Co8(rw

−)Dfw
−]+min(V. w, 0)[fP−Co8(rw

+)Dfw
+]

−max(V. e, 0)[fP+Co8(r e
−)Df e

−]−min(V. e, 0)[fE−Co8(r e
+)Df e

+]
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+max(U. u, 0)[fU+Co8(ru
−)Dfu

−]+min(U. u, 0)[fP−Co8(ru
+)Dfu

+]

−max(U. d, 0)[fP+Co8(rd
−)Dfd

−]−min(U. d, 0)[fD−Co8(rd
+)Dfd

+]

+max(W. s, 0)[fS+Co8(r s
−)Df s

−]+min(W. s, 0)[fP−Co8(r s
+)Df s

+]

−max(W. n, 0)[fP+Co8(rn
−)Dfn

−]−min(W. n, 0)[fN−Co8(rn
+)Dfn

+]+Sf, (52)

where f can take the value (a, N), Co=0.5 and all the terms are calculated at ‘time’ step n,
except when indicated by a superscript n−1. The gradients in Equation (52) are defined as

Df e
+ =fEE−fE, Df e

− =fP−fW, Dfw
+ =fE−fP,

Dfw
− =fW−fWW, etc., (53)

and the flux limiter function is the ‘superbee’ compressive transfer function of Roe [29]

8(r)=max[0, min(2r, 1), min(r, 2)], (54)

where r is the ratio of consecutive gradients and is defined as

r e
− =

fE−fP

aP−aW

, r e
+ =

fP−fW

fE−fEE

, rw
− =

fP−fW

fW−fWW

, rw
+ =

fW−fP

fP−fE

, etc. (55)

The implementation of the flux limiter has a considerably high computational cost, but the
numerical diffusion introduced by the full upwind scheme yielded unacceptable results.
Another drawback of the TVD scheme is that it is less robust than the full upwind scheme,
resulting in convergence difficulties. To avoid these problems, the deferred correction source
provided by the limiter was reduced, using a constant Co=0.49 instead of 0.5. Note that for
Co=0 the full upwinding scheme is recovered (i.e. no correction fluxes are applied).

In contrast to the case of the gas continuity equation and the bubble number density
equation, numerical diffusion is not important in the gas momentum equations because the
advection term is small and the sources are dominant for the bubble sizes involved. In this
case, the numerical method implemented is full upwinding

fP−fP
n−1

Dt
= (fP−fW) max(V. w, 0)+ (fP−fE) min(V. e, 0)+ (fP−fU) max(U. u, 0)

+(fP−fD) min(U. d, 0)+ (fP−fS) max(W. s, 0)+ (fP−fN) min(W. n, 0)+Sf, (56)

where f represents each component of the gas velocity vector. Since the sources are dominant,
great care was taken in the implementation of these equations to avoid a too-stiff behavior and
allow good convergence rates. It should be noted that the sources can be separated into the
terms that are dependent on the gas velocity and those that are independent of the gas velocity.
The terms that depend on the gas velocity are the drag force, the lift force, and the turbulent
dispersion. To make the matrix system more diagonally dominant and reduce the oscillations
in the source during the gas momentum iterations, the source was partitioned as

Sf=Si+Spfp, (57)

where Si is the source independent of the solution at point P and Sp is the coefficient of the
source part dependent on P. Note that Sp is also dependent on the solution at point P through
the drag term, Equation (26), and through the induced turbulent kinetic energy, Equation (21).
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5. COMPUTATIONAL DOMAIN, GRIDS AND BOUNDARY CONDITIONS

The FF-1052 is a Navy frigate which is 126.7 m long with a transom stern and a bulbous bow
to accommodate the sonar. The speed used for calculations was 27 knots, which results in
full-scale Reynolds and Froude numbers of Re=2×109 and Fr=0.39. The computational
conditions for the liquid are full Froude number and Re=2×106. This low Reynolds number
was chosen to allow the use of rather coarse grids and to obtain reasonable results. To
calculate higher Reynolds numbers it is necessary to refine the grid [3]. However, for the gas
equations the full-scale Reynolds number was used.

Referring to Figure 3, the solution domain extends from x/L= −0.4 to 2 and up to a radial
distance from the axis r/L=1. As the case is symmetrical with respect to the centerplane, only
half of the domain must be calculated. To accommodate the abrupt change at the transom
stern, a two-block approach was implemented.

The boundary conditions for the liquid and gas at the different boundaries in the physical
domain are

� At the inlet, x/L= −0.4: it is assumed that the inlet is far enough from the bow of the ship
so that free stream conditions may be used. The liquid velocities and pressure gradient are
set to:

ul=ug=1, 6l=6g=0, wl=wg=0,
(p
(x

=0. (58)

For the gas volume fraction and bubble number density, an estimation of background
entrained air due to wind-induced breaking waves were used, following the measurements
made in the North Atlantic by Melville et al. [33] for 12.7 m s−1 average wind speed. Their
results show a gas volume fraction vertical distribution that fits well with a z−m trend where
m is somewhere between 2.5 and 3. In this work the volume fraction at the inlet followed
the relationship:

a(x= −0.4L, y, z)=
1.6×10−4

(0.1+Dz)2.5(1+0.1Dz)
, (59)

where Dz is the depth measured vertically from the free surface. Equation (59) has the same
trend as the data of Melville but shows a slightly higher volume fraction, possibly due to
wilder sea conditions. The bubble number density is estimated using Equation (9) along
with a constant bubble mass of 2.28×10−12 kg, corresponding to bubbles with 75 mm
radius at the sea surface, a typical size found at the maximum of the bubble size
distributions observed in typical wind breaking waves [22,34]. The measurements of Melville
et al., were performed from 0.69 to 6.94 m depth, so extrapolation was used to estimate the
volume fraction at the sea surface. No information seems to be available for the change of
the gas volume fraction in the near surface region, so the same relation (59) trend was used,
resulting in a gas volume fraction at the free surface of about 5%. It must be noted that
bubbles were not allowed to regenerate (i.e. re-enter the solution domain), so gas is steadily
disappearing through the free surface and dissolving as we move to the end of the
computational domain.

� At the exit, x/L=2: for the liquid, zero gradient conditions were used

(ul

(x
=
(6l
(x

=
(wl

(x
=
(p
(x

=0, (60)
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and for the gas equations, free flux conditions were used.
� At the hull and centerplane, h=0 and z=0: solid wall (hull) or symmetry conditions

(centerplane), there was no gas or momentum flux. For the liquid equations the conditions
were:

ul=0, 6l=0, wl=0 (hull), (61)

(ul

(y
=
(wl

(y
=
(p
(y

=6l=0 (centerplane). (62)

� Outer boundary, at h=hmax, free flow for the gas. For the liquid equations

ul=1, 6l=0, p=0,

ul

((1−a)
(x

+
((1−a)6l
(y

+
((1−a)wl

(z
=0. (63)

� At the free surface: the bubbles are free to leave the control volume. The turbulent
dispersion is set to zero to avoid unrealistic loss of bubbles or entrance of air. For the
liquid, the model of Stern et al. [23] was used, where an exact non-linear free-surface
kinematic equation was solved:

(w

(t
+ul

(w
(x

+6l
(w
(y

−wl=0, (64)

and an approximate dynamic free-surface condition is as follows:

p=
w

Fr2. (65)

For details about the solution method for the free surface equations the reader is referred
to the work of Stern et al. [23].

� At the interface between the two blocks, a parametrically-mapped bilinear-interpolation
scheme was used to interpolate all the dependent variables in the overlapping planes in each
block [23].

The free gas flux boundary conditions were specified using the standard control volume
approach in which the flux at the free flow surface is calculated using the values at the
center of the control volume. For instance, if the free flow surface is given by z=zmax, the
balance equation for f(f=a, N, ug, 6g, wg) in one control volume at zmax reads

CPfP= %
k=u,d,e,w,s

Ckfk+CnfP+Sf,P. (66)

The condition of no gas or momentum flux was calculated by setting the flow through the
appropriate control volume face equal to zero. For example, at the hull or centerplane
(h=0) the west face must have zero convection, so this was specified as

CPfP= %
k=u,d,e,s,n

Ckfk+Sf,P. (67)

To study grid convergence, four grids were used, with 78×21×22 (very coarse), 110×21×
22 (coarse), 110×31×22 (medium) and 110×40×40 (fine) nodes in the j-, h- and
z-directions. An overview of the grids is shown in Figure 3. H-grid topology is used. For each
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Figure 9. Bubble radius (left) and gas volume fraction (right) at axial vertical planes for y/L=0.2 and 0.02.
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grid the first row of nodes is located within y+B2, according to the Baldwin–Lomax
turbulence model. All the results are shown for the fine grid case. An independent grid for the
free surface boundary conditions is used with the same size for all the cases (460×100 nodes).

Figure 10. Gas volume fraction at different cross-planes for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 10 (Continued)

6. SOLUTION PROCEDURE

An appropriate solution strategy for the model is to begin by solving the zero volume fraction
liquid field and calculate the gas transport assuming the velocity field is known, then iterate to
solve the fully coupled model. To obtain an initial solution of the uncoupled liquid field it was
often necessary to attain convergence with the fully coupled model, and is convenient to save
computational time.

Based on this strategy, the uncoupled pressure and velocity fields for the liquid were
calculated first. These fields were used for input in the two-fluid model for the gas velocity,
bubble number density and gas volume fraction calculations.

The system of equations was solved iteratively using a pseudo-temporal approach to reach
steady state. To achieve convergence it was necessary to underrelax the system with underre-
laxation constants of :0.1 for the liquid momentum equations, 0.01 for the pressure equation,
0.03 for the gas momentum equations and 0.3 for the bubble number density and gas
continuity equations. The ‘time’ step used for the gas equations was 100 times larger than that
for the liquid equations, typically t=0.01 for the liquid equations and t=1 for the gas
equations. A significant improvement in the convergence rate was observed by doing this.

A variable was considered converged when the L2 change indicator between two time steps
falls three or more orders of magnitude, where the L2 norm is defined as

L2=
%

(i, j,k)max

(i, j,k)=0

�fi, j,k−f i, j,k
n−1�2

total number of nodes
, (68)

where indexes i, j and k represent the number of nodes associated with the position (j, h, z) in
the computational domain. The maximum gas volume fraction at the hull and the position at
which this is located are also good indicators for convergence and are used together with
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Equation (68). The medium case presented here ran in about 6 h on a Cray C90 with memory
requirements of 10 megawords. The fine case was run on a Silicon Graphics Power Challenge
machine.

Figure 11. Bubble radius at different cross-planes for x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35.
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Figure 11 (Continued)

7. NUMERICAL RESULTS AND DISCUSSION

A general view of the FF-1052 frigate and the free surface is shown in Figure 1. The contour
lines represent constant gas volume fraction, and it is clear from this figure that the influence
of the ship causes strong modification of the bubble field in the wake.

Table I shows some integral quantities used for grid convergence analysis. The values shown
in each cell are for the very coarse, coarse, medium and fine grids. The quantities chosen are
the maximum and minimum pressure and wave height at the hull, the maximum gas volume
fraction and bubble number density at the hull, the maximum gas velocity vector in all the
domain, and the position of each of these quantities. The bubble number density shown is
non-dimensionalized with the reference bubble volume, corresponding to a reference bubble
radius of 75 mm. The very coarse grid is too coarse and fails when trying to accommodate the
free surface, which causes important misestimations in the volume fraction and number density
maxima and their positions. In the other grids the numerical results tend to converge when the
grid is refined, but finer grids would probably be necessary to assess complete grid conver-
gence.

Figure 4 shows a comparison between the free-surface wave elevation at the hull of the four
grids and the experimental data [4] taken at Fr=0.39, Re=2.01×107. Also included is a
single-phase calculation with the code CFDSHIP-IOWA at Fr=0.39, Re=4.0×106 in a grid
with 330720 nodes. It must be noted that the model was allowed to sink and trim in the
experiments, which is not allowed in the calculations. In order to compare properly with the
numerical calculations, the experimental data was corrected by subtracting the height corre-
sponding to sinkage and trim; see the discussion in the work by Stern et al. [23]. Notice that
even though Fr is the same in all the plots, Re changes significantly, therefore differences can
be expected. Additionally, the sinkage and trim allowed in the experiments change the wetted
geometry, introducing additional differences. However, for the purposes of a qualitative
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comparison the data available is used. It can be seen that the height and position of the bow
peak is correctly predicted, but the second peak at x/L=0.32 and the wave depression at
x/L=0.6 are lacking. This is probably due to the low Re number used in the calculations,
because this feature develops at higher Re, as already noticed by Stern et al. [23]. On the other
hand, it can be clearly seen that the very coarse grid fails to follow the free surface, but the
other three grids give essentially the same wave.

For the purposes of this work the fine grid is considered good enough for the calculations.

7.1. Velocity and pressure fields

The U-component contour lines and the (V, W) vectors of the liquid velocity, and pressure
contour lines are shown in Figures 5–7, for non-dimensional axial lengths x/L=0.05, 0.35,
0.65, 0.95, 1.05 and 1.35. The single-phase liquid and pressure fields for the frigate with
non-zero Froude number are discussed extensively in the works of Paterson et al. [3] and Stern
et al. [23] and are mentioned in this work when appropriate. It must be noted that all the
vector fields were interpolated onto uniform grids to allow easier visualization. Otherwise the
strong concentration of nodes at the hull makes it difficult to see the results in that region.

The gas–liquid relative velocity vector fields for axial lengths x/L=0.05, 0.35, 0.65, 0.95,
1.05 and 1.35 are shown in Figure 8. Due to the very small size of the bubbles being considered
and the nature of the problem, the relative velocities between the gas and the liquid are much
smaller than the liquid velocity. Nevertheless, the relative velocity plays a major role in the
bubble distribution, mainly because of the lateral lift and the fact that the gas velocity field has
non-zero divergence, thus allowing the concentration or depletion of bubbles in certain regions
of the flow. Also, due to the presence of bubbles, the liquid velocity is modified resulting in an
additional cause for a non-solenoidal gas velocity field. All this is valid close to the ship where
the liquid velocity field is highly rotational. Far from the ship, in the inviscid flow region, only
the gravitational dispersion and the drag forces are of importance.

At x/L=0.05 the boundary layer is starting to form and the liquid flow is almost
irrotational in the plane, except very close to the wall. Nevertheless, the relative velocity field
presents complex features. As shown in Figure 8, bubbles tend to move towards the hull at
x/L=0.05, where the boundary layer is starting to develop and the velocity gradient is very
strong. This causes the lift force to dominate in that region. As the pressure decreases in this
region as x increases, the liquid travels faster than the gas and the life force points toward the
hull. In general, the opposite occurs for x/L\0.5, where the lift forces repels bubbles from the
hull in most of the domain. The (V, W) vectors show the effect of the bubble size on the
vertical velocity, which increases close to the surface where the bubbles are bigger, and the
strong effect of the turbulent dispersion at the crest of the wave. If we note in Equation (33)
that this force has the same order of magnitude as the drag force, the turbulent dispersion
force can be expected to be dominant where the gas volume fraction gradients are large. This
effect is clearer at x/L=0.95 or larger (see Figure 7), at the cut planes downstream where
strong gradients are developing and the turbulent viscosity increases strongly due to the
appearance of large scale eddies, mainly in the wake. In this region, the Baldwin–Lomax
turbulence model used is less reliable and likely to cause misestimations of the turbulent
viscosity, resulting in unrealistic turbulent dispersion.

7.2. Bubble size and gas 6olume fraction

The general trend followed by the gas volume fraction and the bubble radius in the axial
direction is shown in Figure 9. At constant depth there is a loss of gas due to dissolution of
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the bubbles and convection towards the surface. At greater depths, the dissolution effect is the
most important, because of the high pressure that causes the air concentration in the liquid at
the bubble surface to increase considerably and the bubble radius to shrink (see Equation (6)).
The behavior of the bubble radius and volume fraction far from the ship can be seen for y/L=0.2,
where both the effects of hydrostatic pressure and dissolution near the free stream can be observed.
Close to the ship, at y/L=0.02, the effects of the ship on the bubble radius are evident. The
bubble radius is reduced due to the presence of the ship, which in turn causes the bubbles to
stay in the water longer and then dissolve more than the bubbles far from the ship. The dissolution
of bubbles competes with the accumulation of bubbles close to the hull to determine the volume
fraction behind the ship.

Contour lines of the gas volume fraction and bubble radius for perpendicular planes at
x/L=0.05, 0.35, 0.65, 0.95, 1.05 and 1.35 are shown in Figures 10 and 11. At x/L=0.05 almost
no bubble accumulation is observed as the flow is close to irrotational, but the gas volume fraction
at the surface is smaller close to the ship. At x/L=0.35 some bubble accumulation is observed
at the hull and the bubble radius is also affected by the presence of the ship. At x/L=0.65 the
reduction in the radius is more noticeable, also causing a reduction of the gas volume fraction
in the lower part of the ship, with some gas accumulation persisting at the midgirth where the
dissolution effects are smaller. Down to x/L=0.95, dissolution dominates the picture, and even
when the bubble concentration at the hull is larger, the gas volume fraction is smaller. This results
in the generation of a depleted bubbly wake with very small bubbles, as can be seen at x/L=1.05
and 1.35. Another effect that contributes to the generation of the depletion of gas at the near
wake is the generation of a upwelling plume that brings up the smaller bubbles present at deeper
positions. This effect has already been observed for the case of temperature stratification [3] and
in general is strongly dependent on the ship’s geometry and propeller.

8. CONCLUSIONS AND RECOMMENDED FUTURE WORK

A multidimensional computational model for the two-phase flow around a naval surface ship
has been presented. The model can calculate the monodispersed gas volume fraction and bubble
radius, including the coupling of the gas in the liquid equations. The model was applied to the
case of the scavenging of background bubbles in the ocean by a naval surface ship, resulting
in the generation of a gas-depleted bubbly wake of small bubbles.

It is important to note the monodisperse property of the model used. Even though the changes
in the bubble radius with position and time can be calculated, there is a single bubble size at
each position. The case calculated can be simulated in towing-tank conditions, by injecting a
single-size bubble population in front of the model ship. However, the single bubble size
assumption is an obvious limitation for calculating more realistic cases for full size ships in real
sea background, where bubbles enter the water with a size distribution and can break-up, coalesce
or collide.

The ultimate goal of this research is to have a reliable model to calculate the bubble
concentration and size distribution at each point in time and space in the near field around a
ship. Future needs to accomplish this goal are coupling the wave calculation to bubble entrainment
by wave breaking and spilling, the introduction of a polydisperse bubble transport model, the
calculation of the effect of the propeller including the bubble sources it introduces and
improvement of the calculation of the turbulence field, particularly in the wake, where errors
on the estimation of the turbulent dispersion were observed. Experimental data to properly assess
the accuracy of the model are also necessary.
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